COMPUTATION OF UNSTEADY INCOMPRESSIBLE FLOWS WITH THE STABILIZED FINITE ELEMENT METHODS: SPACE-TIME FORMULATIONS, ITERATIVE STRATEGIES AND MASSIVELY PARALLEL IMPLEMENTATIONSt
نویسندگان
چکیده
We discuss the stabilized finite element computation of unsteady incompressible flows, with emphasis on the space-time formulations, iterative solution techniques and implementations on the massively parallel architectures such as the Connection Machines. The stabilization technique employed in this paper is the Galerkinjleast-squares (GLS) method. The Deformable-Spatial-DomainjStabilized-SpaceTime (DSDjSST) formulation was developed for computation of unsteady viscous incompressible flows which involve moving boundaries and interfaces. In this approach, the stabilized finite element formulations of the governing equations are written over the space-time domain of the problem, and therefore the deformation of the spatial domain with respect to time is taken into account automatically. This approach gives us the capability to solve a large class of problems with free surfaces, moving interfaces, and fluid-structure and fluid-particle interactions. In the DSDjSST approach the frequency of remeshing is minimized to minimize the projection errors involved in remeshing and also to increase the parallelization potential of the computations. We present a new mesh moving scheme that minimizes the need for remeshing; in this scheme the motion of the mesh is governed by the modified equations of linear homogeneous elasticity. The implicit equation systems arising from the finite element discretizations are solved iteratively by using the GMRES search technique with the clustered element-by-element, diagonal and nodal-block-diagonal preconditioners. Formulations with diagonal and nodal-block-diagonal preconditioners have been implemented on the Connection Machines CM-200 and CM-5. We also describe a new mixed preconditioning method we developed recently, and discuss the extension of this method to totally unstructured meshes. This mixed preconditioning method is similar, in philosophy, to multi-grid methods, but does not need any intermediate grid levels, and therefore is applicable to unstructured meshes and is simple to implement. The application problems considered include various free-surface flows and simple fluid-structure interaction problems such as vortex-induced oscillations of a cylinder and flow past a
منابع مشابه
FETI Coarse Problem Parallelization Strategies and Their Comparison
Most of computations (subdomain problems) appearing in FETI-type methods are purely local and therefore parallelizable without any data transfers. However, if we want to accelerate also dual actions, some communication is needed due to primal-dual transition. Distribution of primal matrices is quite straightforward. Each of cores works with local part associated with its subdomains. A natural e...
متن کاملScalable evaluation of polarization energy and associated forces in polarizable molecular dynamics: II. Toward massively parallel computations using smooth particle mesh Ewald.
In this article, we present a parallel implementation of point dipole-based polarizable force fields for molecular dynamics (MD) simulations with periodic boundary conditions (PBC). The smooth particle mesh Ewald technique is combined with two optimal iterative strategies, namely, a preconditioned conjugate gradient solver and a Jacobi solver in conjunction with the direct inversion in the iter...
متن کاملMassively Parallel Computing: Unstructured Finite Element Simulations
Massively parallel computing holds the promise of extreme performance. Critical for achieving high performance is the ability to exploit locality of reference and eeective management of the communication resources. This article describes two communication primitives and associated mapping strategies that have been used for several diierent un-structured, three-dimensional, nite element applicat...
متن کامل12 A Critical Analysis of MultigridMethods on Massively
The hierarchical nature of multigrid algorithms leaves domain parallel strategies with a deeciency of parallelism as the computation moves to coarser and coarser grids. To introduce more parallelism several strategies have been designed to project the original problem space into non-interfering subspaces, allowing all grids to relax concurrently. Our objective is to understand the potential eec...
متن کاملReal-Time Elimination of Undersampling Artifacts using 3D Total Variation on Graphics Hardware
Introduction Undersampled imaging strategies with cutting edge reconstruction methods like compressed sensing, which reformulate image reconstruction as a constrained optimization problem [1,2], have the potential to deliver images with high spatial and temporal resolution. This is of great importance for application like time resolved MR angiography, because the acquisition window is limited b...
متن کامل